Genome Information of Methylobacterium oryzae, a Plant-Probiotic Methylotroph in the Phyllosphere
نویسندگان
چکیده
Pink-pigmented facultative methylotrophs in the Rhizobiales are widespread in the environment, and many Methylobacterium species associated with plants produce plant growth-promoting substances. To gain insights into the life style at the phyllosphere and the genetic bases of plant growth promotion, we determined and analyzed the complete genome sequence of Methylobacterium oryzae CBMB20T, a strain isolated from rice stem. The genome consists of a 6.29-Mb chromosome and four plasmids, designated as pMOC1 to pMOC4. Among the 6,274 coding sequences in the chromosome, the bacterium has, besides most of the genes for the central metabolism, all of the essential genes for the assimilation and dissimilation of methanol that are either located in methylotrophy islands or dispersed. M. oryzae is equipped with several kinds of genes for adaptation to plant surfaces such as defense against UV radiation, oxidative stress, desiccation, or nutrient deficiency, as well as high proportion of genes related to motility and signaling. Moreover, it has an array of genes involved in metabolic pathways that may contribute to promotion of plant growth; they include auxin biosynthesis, cytokine biosynthesis, vitamin B12 biosynthesis, urea metabolism, biosorption of heavy metals or decrease of metal toxicity, pyrroloquinoline quinone biosynthesis, 1-aminocyclopropane-1-carboxylate deamination, phosphate solubilization, and thiosulfate oxidation. Through the genome analysis of M. oryzae, we provide information on the full gene complement of M. oryzae that resides in the aerial parts of plants and enhances plant growth. The plant-associated lifestyle of M. oryzae pertaining to methylotrophy and plant growth promotion, and its potential as a candidate for a bioinoculant targeted to the phyllosphere and focused on phytostimulation are illuminated.
منابع مشابه
Interactions of Methylotrophs with Plants and Other Heterotrophic Bacteria
Methylotrophs, which can utilize methane and/or methanol as sole carbon and energy sources, are key players in the carbon cycle between methane and CO₂, the two most important greenhouse gases. This review describes the relationships between methylotrophs and plants, and between methanotrophs (methane-utilizers, a subset of methylotrophs) and heterotrophic bacteria. Some plants emit methane and...
متن کاملComplete Genome Sequence of Methylobacterium sp. Strain AMS5, an Isolate from a Soybean Stem
Nonrhizobial Methylobacterium spp. inhabit the phyllosphere of a wide variety of plants. We report here the complete genome sequence of Methylobacterium sp. AMS5, which was isolated from a soybean stem. The information is useful for understanding the molecular mechanisms of the interaction between nonrhizobial Methylobacterium spp. and plants.
متن کاملComplete Genome Sequence of the Facultative Methylotroph Methylobacterium extorquens TK 0001 Isolated from Soil in Poland
Methylobacterium extorquens TK 0001 (DSM 1337, ATCC 43645) is an aerobic pink-pigmented facultative methylotrophic alphaproteobacterium isolated from soil in Poland. Here, we report the whole-genome sequence and annotation of this organism, which consists of a single 5.71-Mb chromosome.
متن کاملCultivation-independent characterization of methylobacterium populations in the plant phyllosphere by automated ribosomal intergenic spacer analysis.
Bacteria of the genus Methylobacterium are widespread in the environment, but their ecological role in ecosystems, such as the plant phyllosphere, is not very well understood. To gain better insight into the distribution of different Methylobacterium species in diverse ecosystems, a rapid and specific cultivation-independent method for detection of these organisms and analysis of their communit...
متن کاملDiscovery of rare protein-coding genes in model methylotroph Methylobacterium extorquens AM1.
Proteogenomics involves the use of MS to refine annotation of protein-coding genes and discover genes in a genome. We carried out comprehensive proteogenomic analysis of Methylobacterium extorquens AM1 (ME-AM1) from publicly available proteomics data with a motive to improve annotation for methylotrophs; organisms capable of surviving in reduced carbon compounds such as methanol. Besides identi...
متن کامل